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Abstract
The conformal groups for the nine two-dimensional real spaces of constant
curvature are realized as matrix groups acting as globally defined linear
transformations in a four-dimensional ‘conformal ambient space’. This affords
a unified and global study of the ‘conformal completion’ or compactification
for the three classical Riemannian spaces as well as of the six relativistic
and non-relativistic spacetimes (Minkowskian, de Sitter, anti-de Sitter, both
Newton–Hooke and Galilean). The conformal embedding of the initial space
into its compactification is carried out explicitly through two methods: either
a group-theoretical one involving one-parameter subgroups or a geometric one
by means of a stereographic projection. In the Euclidean and Minkowskian
spaces the results reduce to the well known ones, but in the generic situation,
with any non-zero curvature or arbitrary type signature, the approach is very
explicit and provides some new insights.

PACS numbers: 02.20.−a, 02.40.−k, 11.25.Hf

1. Introduction

In a previous paper [1] we have developed a new approach to the study of cycle-preserving
(conformal) transformations of the three 2D Riemannian spaces and the six (1 +1)D spacetimes
with constant curvature, which provides explicit expressions for the vector fields generating
cycle-preserving transformations. This has been accomplished within a Cayley–Klein (CK)
framework [2–6], which is able to produce general expressions, holding simultaneously for the
nine spaces which are parametrized in terms of two parameters κ1, κ2: their constant curvature
is κ1 and metric signature type is (+1, κ2). The CK spaces S2

[κ1],κ2
arise for the nine essentially

different sets of particular values of κi (see table 1). We recall that in spacetimes: κ1 = ±1/τ 2

and κ2 = −1/c2, where τ is the universe time radius and c is the speed of light.
The conformal Lie algebra so obtained, confκ1,κ2 , is spanned by generators of translations

Pi along two orthogonal directions (which whenever κ2 � 0 can be seen as time and space
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directions), rotations (or boosts) J12, specific conformal transformations Gi and dilations D
(i = 1, 2), and their commutation rules read

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12

[J12,G1] = G2 [J12,G2] = −κ2G1 [G1,G2] = 0
[D,Pi ] = Pi + κ1Gi [D,Gi ] = −Gi [D, J12] = 0
[P1,G1] = D [P2,G2] = κ2D

[P1,G2] = −J12 [P2,G1] = J12.

(1.1)

The conformal algebra confκ1,κ2 is isomorphic to so(3, 1), iso(2, 1) and so(2, 2) according to
κ2 >,=,< 0, respectively (regardless of the value of κ1). The three generators {J12, P1, P2}
close the initial CK algebra soκ1,κ2(3), that is, the Lie algebra of isometries of these spaces.

As is well known, such a Lie algebra approach only provides a realization of the conformal
Lie group confκ1,κ2 as a local group of transformations in the CK space S2

[κ1],κ2
. The need to

suitably complete S2
[κ1],κ2

with ‘additional’ points in order to have conformal transformations
defined as a global group of transformations arises because the vector fields so obtained and
closing the Lie algebra (1.1) are, in general, not complete. An example is provided by the
hyperbolic space H2 ≡ S2

[−],+, for which the finite one-parameter transformations generated
by the dilation D are given, in polar coordinates, by [1]:

tanh(r ′/2) = eλ tanh(r/2) (1.2)

where eλ is a ‘similarity factor’. A dilation with centre O and factor eλ > 1 transforms the
interior of a disc of centre O and radius r = 2 argtanh(e−λ) into the entire hyperbolic space,
because r ′ = ∞. Therefore, in order to have a global group, the images of the points outside
the disc should be added to the ‘ordinary’ points, as otherwise these points cannot have an
image by the dilation.

In this paper we propose a new description, covering the nine CK spaces in the same
run, of their corresponding inversive or conformal compactifications, where cycle-preserving
transformations can be defined as global transformations. In section 2 the 2D conformal group
is realized as a 4 × 4 matrix Lie group providing a linear action in a 4D conformal ambient
space. In section 3 the conformal completion or compactification of the CK space S2

[κ1],κ2
is

defined as a homogeneous space confκ1,κ2/sim0,κ2 , where sim0,κ2 is a subgroup of confκ1,κ2

isomorphic to the similitude subgroup of the flat CK space S2
[0],κ2

. The conformal embedding
of the initial CK space into its conformal compactification is performed in section 4 by means
of two different procedures. The former makes use of one-parameter conformal subgroups
parametrizing the conformal space in terms of geodesic coordinates of the CK space. The latter
is a stereographic projection of the CK space into its conformal completion. These results
extend to all the nine CK spaces the conformal compactification and linearization already
familiar for the Euclidean [7, 8] and Minkowskian spaces [7, 9–12] yet it does this extension
in a way which still makes sense for curved and/or degenerate metric spaces. A discussion of
the conformal completion for each particular space is also performed. Some comments close
the paper.

2. Conformal groups

Let us consider the following 4 × 4 real matrix representation of the conformal algebra
confκ1,κ2 (1.1), which can be obtained from its identification with so(3, 1), iso(2, 1) or
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so(2, 2) according to the sign of κ2 [13]:

P1 = 1

2�




0 0 −1− κ1�
2 0

0 0 −1 + κ1�
2 0

1 + κ1�
2 −1 + κ1�

2 0 0
0 0 0 0


 J12 =




0 0 0 0
0 0 0 0
0 0 0 −κ2

0 0 1 0




P2 = 1

2�




0 0 0 −κ2(1 + κ1�
2)

0 0 0 −κ2(1− κ1�
2)

0 0 0 0
1 + κ1�

2 −1 + κ1�
2 0 0


 D =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




G1 = �




0 0 1 0
0 0 −1 0
−1 −1 0 0
0 0 0 0


 G2 = �




0 0 0 κ2

0 0 0 −κ2

0 0 0 0
−1 −1 0 0


 .

(2.1)

As the product κ1�
2 is dimensionless, the parameter � is a non-zero constant with dimensions

of length; when κ2 < 0 this will be considered as a ‘time-like’ length. Note that Pi and Gi

must be dimensionally inverse to each other [14].
Exponentiation gives rise to the following one-parametric subgroups of confκ1,κ2 , where

we have introduced the curvature-dependent trigonometric functions: cosineCκ(x), sine Sκ(x)
and versed sine Vκ(x), fully described in [1, 4]:

eµ1P1 =




1− (1+κ1�
2)

2

4�2 Vκ1(µ1)
(1−κ2

1 �
4)

4�2 Vκ1(µ1) − (1+κ1�
2)

2� Sκ1(µ1) 0

− (1−κ2
1 �

4)
4�2 Vκ1(µ1) 1 + (

1−κ1�
2)

2

4�2 Vκ1(µ1) − (1−κ1�
2)

2� Sκ1(µ1) 0

(1+κ1�
2)

2� Sκ1(µ1) − (1−κ1�
2)

2� Sκ1(µ1) Cκ1(µ1) 0

0 0 0 1




eµ2P2 =




1− κ2(1+κ1�
2)

2

4�2 Vκ1κ2(µ2)
κ2(1−κ2

1 �
4)

4�2 Vκ1κ2(µ2) 0 − κ2(1+κ1�
2)

2� Sκ1κ2(µ2)

− κ2(1−κ2
1 �

4)
4�2 Vκ1κ2(µ2) 1 +

κ2(1−κ1�
2)

2

4�2 Vκ1κ2(µ2) 0 − κ2(1−κ1�
2)

2� Sκ1κ2(µ2)

0 0 1 0
(1+κ1�

2)
2� Sκ1κ2(µ2) − (1−κ1�

2)
2� Sκ1κ2(µ2) 0 Cκ1κ2(µ2)




eν1G1 =




1− 1
2ν

2
1�

2 − 1
2ν

2
1�

2 ν1� 0
1
2ν

2
1�

2 1 + 1
2ν

2
1�

2 −ν1� 0

−ν1� −ν1� 1 0
0 0 0 1


 eψJ12 =




1 0 0 0
0 1 0 0
0 0 Cκ2(ψ) −κ2Sκ2(ψ)

0 0 Sκ2(ψ) Cκ2(ψ)




eν2G2 =




1− 1
2κ2ν

2
2�

2 − 1
2κ2ν

2
2�

2 0 κ2ν2�

1
2κ2ν

2
2�

2 1 + 1
2κ2ν

2
2�

2 0 −κ2ν2�

0 0 1 0
−ν2� −ν2� 0 1


 eξD =




cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1


 .

(2.2)

In this representation the conformal group confκ1,κ2 acts in a conformal linear ambient
space R

4 = (s+, s−, s1, s2) as the group of linear isometries of a bilinear form

ϒ = diag(1,−1, 1, κ2) (2.3)
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that is, any element X ∈ confκ1,κ2 fulfils

XTϒX = ϒ (2.4)

where XT denotes the transpose matrix of X. Therefore the action of confκ1,κ2 preserves the
quadratic form (s+)2− (s−)2 + (s1)2 + κ2(s

2)2. The subgroup spanned by {J12,G1,G2} leaves
invariant the origin point O = (1,−1, 0, 0) ∈ 	0, while the dilation subgroup exp(ξD)
transforms O into (e−ξ ,−e−ξ , 0, 0). Consequently, 〈J12,G1,G2,D〉 spans the isotropy
subgroup of the ray of O, which turns out to be isomorphic to the similitude group of a
2D flat space: either the Euclidean (κ2 > 0), Galilean (κ2 = 0), or Poincaré (κ2 < 0)
similitude group; this is therefore denoted sim0,κ2 . The two remaining subgroups generated
by P1 and P2 move the ray of O. The orbit of O under confκ1,κ2 is henceforth contained in the
cone 	0 given by

	0 ≡ (s+)2 − (s−)2 + (s1)2 + κ2(s
2)2 = 0. (2.5)

3. Completed conformal spaces

The former description allows us to define, for any of the nine CK spaces S2
[κ1],κ2

, the
corresponding 2D completed conformal space C2

[κ1],κ2
, also called inversive CK space, as

a homogeneous space:

C2
[κ1],κ2

:= confκ1,κ2/sim0,κ2 (3.1)

where sim0,κ2 is a subgroup ofC2
[κ1],κ2

, generated by J12,D,G1,G2. Its structure is a semidirect
product:

sim0,κ2 = T2 �
(
SOκ2(2)⊗ SO(1, 1)

)
T2 = 〈G1,G2〉 SOκ2(2) = 〈J12〉 SO(1, 1) = 〈D〉. (3.2)

To get an explicit model of the conformal space, we need to consider in closer detail the orbit
of the ray O under the action of the group confκ1,κ2 . Consider first the rays in this orbit (hence
fulfilling (2.5)) for which s− 	= 0; each such ray determines a unique and well-defined point
in the section of 	0 by the hyperplane s− = −1. The natural coordinates (s̃+, s̃1, s̃2) on this
section are defined by s̃i = −si/s− and verify

(s̃+)2 + (s̃1)2 + κ2(s̃
2)2 = 1←→ S2

[+],κ2
(3.3)

displaying the identification of the set of these rays with the orbit of O ≡ (1, 0, 0) in a CK
ambient space sphere for the CK constants κ1 = +1, κ2, hence to a 2D CK space with positive
curvature S2

[+],κ2
(see table 1). By taking into account the sign of κ2 we find after (2.5) two

different situations:

• In Riemannian spaces with κ2 > 0, the cone 	0 cannot contain directions with s− = 0,
that is, the set of rays in 	0 can directly be identified with the section s− = −1 (3.3).
• In spacetimes with κ2 � 0, the cone will always contain rays with s− = 0. These rays

will have no proper intersection with the section s− = −1. However, these will appear
as points at infinity in (3.3). Further, to deal with rays implies that these points should
be identified through the ordinary antipodal identification in R

4, which when s− = 0
translates into antipodal identification in the section s− = −1. Consequently we state the
following.
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Table 1. The nine 2D CK spaces S2
[κ1],κ2

= SOκ1,κ2 (3)/SOκ2(2) and their conformal

compactifications C2
[κ1],κ2

; we denote ISO(1) = R and NH means Newton–Hooke.

The three Riemannian spaces with κ2 > 0:
Elliptic: S2 Euclidean: E2 Hyperbolic: H2

S2
[+],+ = SO(3)/SO(2) S2

[0],+ = ISO(2)/SO(2) S2
[−],+ = SO(2, 1)/SO(2)

have as their conformal compactification:
C2

[κ1],+ ≡ confκ1,+/sim0,+ ≡ SO(3, 1)/(T2 � (SO(2)⊗ SO(1, 1))) ≡ S2
[+],+ ≡ S2

The three non-relativistic spacetimes with κ2 = 0:
Oscillating NH: NH1+1

+ Galilean: G1+1 Expanding NH: NH1+1−
S2

[+],0 = ISO(2)/ISO(1) S2
[0],0 = IISO(1)/ISO(1) S2

[−],0 = ISO(1, 1)/ISO(1)
have as their conformal compactification:

C2
[κ1],0 ≡ confκ1,0/sim0,0 ≡ ISO(2, 1)/(T2 � (ISO(1)⊗ SO(1, 1))) ≡ S̃2

[+],0 ≡ ÑH
1+1
+

The three relativistic spacetimes with κ2 < 0:
Anti-de Sitter: AdS1+1 Minkowskian: M1+1 De Sitter: dS1+1

S2
[+],− = SO(2, 1)/SO(1, 1) S2

[0],− = ISO(1, 1)/SO(1, 1) S2
[−],− = SO(2, 1)/SO(1, 1)

have as their conformal compactification:

C2
[κ1],− ≡ confκ1,−/sim0,− ≡ SO(2, 2)/(T2 � (SO(1, 1)⊗ SO(1, 1))) ≡ S̃2

[+],− ≡ ÃdS
1+1

Theorem 1. The conformal or inversive completion C2
[κ1],κ2

of any of the nine 2D CK spaces
can be described as

C2
[κ1],κ2

≡ S̃2
[+],κ2

:= S2
[+],κ2
∪ { points at infinity in S2

[+],κ2
with antipodal identification}

and the conformal space C2
[κ1],κ2

so obtained is always compact.

In this way, we find explicitly the completed conformal spaces for the nine CK spaces as
displayed in table 1:

• The conformal completion of the three Riemannian spaces with κ2 > 0 and any curvature
κ1 is the ordinary sphere S2. There are no points at infinity in S2, so that S̃2 = S2.

• The three non-relativistic spacetimes with κ2 = 0 (c = ∞) and any κ1 have as their

conformal compactification the space ÑH
1+1
+ , obtained from the oscillating Newton–

Hooke spacetime through antipodal identification of its points at infinity.

• The three relativistic spacetimes with κ2 = −1/c2 < 0 and any κ1 have as their conformal

compactification the space ÃdS
1+1

, obtained from the anti-de Sitter spacetime through
antipodal identification of its points at (spatial) infinity.

Furthermore, the relation (3.3) between the conformal space and a CK space
suggests calling (s̃+, s̃1, s̃2) conformal Weierstrass coordinates of C2

[κ1],κ2
, which in turn

can be parametrized in terms of three sets of conformal geodesic coordinates, similar
to the CK spaces [1]; these are parallel I (A, Y ), parallel II (X,B) and polar (R,
)
coordinates:

s̃+ = cosACκ2(Y ) = cosXCκ2(B) = cosR
s̃1 = sinACκ2(Y ) = sinX = sinRCκ2(
)

s̃2 = Sκ2(Y ) = cosX Sκ2(B) = sinR Sκ2(
).

(3.4)
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Table 2. The conformal embedding S2
[κ1],κ2

−→ C2
[κ1],κ2

in three geodesic coordinate systems.

Coordinates (s+, s−, s1, s2) parametrize the cone 	0 ∈ R
4, while (s̃+, s̃− = −1, s̃1, s̃2) are a

parametrization of the conformal space itself C2
[κ1],κ2

≡ S̃2
[+],κ2

. We have introduced the shorthand

notation η+ = 1+κ1�
2

2κ1�
2 and η− = 1−κ1�

2

2κ1�
2 .

Parallel I coordinates Parallel II coordinates Polar coordinates

(a, y) ∈ S2
[κ1],κ2

→ (A, Y ) ∈ C2
[κ1],κ2

(x, b) ∈ S2
[κ1],κ2

→ (X,B) ∈ C2
[κ1],κ2

(r, φ) ∈ S2
[κ1],κ2

→ (R,
) ∈ C2
[κ1],κ2

s± = ±1− η±{1− Cκ1(a)Cκ1κ2 (y)} s± = ±1− η±{1− Cκ1(x)Cκ1κ2 (b)} s± = ±1− η±(1− Cκ1 (r))

s1 = Sκ1(a)Cκ1κ2 (y)/� s1 = Sκ1(x)/� s1 = Sκ1(r)Cκ2(φ)/�

s2 = Sκ1κ2 (y)/� s2 = Cκ1(x)Sκ1κ2 (b)/� s2 = Sκ1(r)Sκ2(φ)/�

s̃+ = 1− η+{1− Cκ1(a)Cκ1κ2 (y)}
1 + η−{1− Cκ1(a)Cκ1κ2 (y)}

s̃+ = 1− η+{1− Cκ1(x)Cκ1κ2 (b)}
1 + η−{1− Cκ1(x)Cκ1κ2 (b)}

s̃+ = �2 − T 2
κ1
(r/2)

�2 + T 2
κ1
(r/2)

s̃1 = Sκ1(a)Cκ1κ2(y)/�

1 + η−{1− Cκ1(a)Cκ1κ2 (y)}
s̃1 = Sκ1(x)/�

1 + η−{1− Cκ1(x)Cκ1κ2 (b)}
s̃1 = 2�Tκ1 (r/2)Cκ2(φ)

�2 + T 2
κ1
(r/2)

s̃2 = Sκ1κ2 (y)/�

1 + η−{1− Cκ1(a)Cκ1κ2 (y)}
s̃2 = Cκ1(x)Sκ1κ2(b)/�

1 + η−{1− Cκ1(x)Cκ1κ2 (b)}
s̃2 = 2�Tκ1 (r/2)Sκ2(φ)

�2 + T 2
κ1
(r/2)

tanA = Tκ1(a)

�

1− κ1T
2
κ1
(r/2)

1− 1
�2 T

2
κ1
(r/2)

sinX = Sκ1(x)

�

1 + κ1T
2
κ1
(r/2)

1 + 1
�2 T

2
κ1
(r/2)

tan2(R/2) = 1

�2
T 2
κ1
(r/2)

Sκ2(Y ) =
Sκ1κ2 (y)

�

1 + κ1T
2
κ1
(r/2)

1 + 1
�2 T

2
κ1
(r/2)

Tκ2 (B) =
Tκ1κ2 (b)

�

1− κ1T
2
κ1
(r/2)

1− 1
�2 T

2
κ1
(r/2)


 = φ

4. Conformal embedding S2
[κ1],κ2 �−→ C2

[κ1],κ2

The CK space S2
[κ1],κ2

is naturally embedded into its conformal compactification C2
[κ1],κ2

. To
describe this, a group theoretical procedure is the following: let us consider a pointQ ∈ S2

[κ1],κ2

with geodesic coordinates (a, y), (x, b) or (r, φ) [1]; this means that under the CK matrix
realization, Q is obtained as the image of the origin point by the products exp(aP1) exp(yP2),
exp(bP2) exp(xP1) or exp(φJ12) exp(rP1), with these group elements computed in the 3× 3
standard realization of the CK group, and not in the conformal 4 × 4 realization (2.2). By
definition, the image of Q under the conformal embedding is the point Q̃, with coordinates
s = (s+, s−, s1, s2), obtained from the origin O = (1,−1, 0, 0) ∈ 	0 under the corresponding
pairs of one-parameter subgroups, now taken in the conformal realization (2.2) yet with the
same values for the canonical parameters. In this way the orbit of the conformal origin
O ∈ 	0 under the initial CK group, is identified as a subset of the conformal completion of the
initial space, and the corresponding identification describes the conformal embedding from
the former into the latter.

As the conformal completion itself has been identified first as a subset of the projective
cone 	0, and next as a space S̃2

[+],κ2
obtained by antipodal identification of points at infinity

in a CK space, we have at hand another parametric description of the latter in terms either of
the conformal Weierstrass coordinates or conformal geodesic coordinates, as given in (3.4).
This leads to explicit relations between the usual geodesic coordinates (a, y), (x, b) or (r, φ)
in the initial space and either the conformal geodesic coordinates (A, Y ), (X,B), (R,
) or
the conformal Weierstrass coordinates s̃ = (s̃+, s̃1, s̃2) in the conformal completion (recall
s̃i = −si/s− where s+, s−, si are the canonical coordinates in the conformal ambient space).
The final results are displayed in table 2.
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This embedding has also a very neat geometrical description as a stereographic projection.
On the one hand, the initial CK space S2

[κ1],κ2
can be realized in a linear ambient space

R
3 = (x0, x1/�, x2/�), with equation

(x0)2 + κ1�
2(x1/�)2 + κ1κ2�

2(x2/�)2 = 1 (4.1)

which can be considered as the CK space S2
[κ1�

2],κ2
. On the other hand, the corresponding

conformal space C2
[κ1],κ2

= S̃2
[+],κ2

is realized in the ambient space R
3 = (s̃+, s̃1, s̃2) (the

section s− = −1 of the projective cone 	0) through (3.3). If both ambient spaces are
identified as

s̃+ ↔ x0 s̃1 ↔ x1/� s̃2 ↔ x2/� (4.2)

the former embedding of S2
[κ1],κ2

into C2
[κ1],κ2

turns out to coincide with a stereographic
projection of S2

[κ1�
2],κ2

into S̃2
[+],κ2

with pole P = (−1, 0, 0):

(x0 + 1, x1/�, x2/�) = µ(s̃+ + 1, s̃1, s̃2) (4.3)

where the real proportionality factor µ is

µ = 2

(1 + s̃+) + κ1�2(1− s̃+)
= x0 + 1

2
+

1− x0

2κ1�2
. (4.4)

Hence the stereographic projection equations turn out to be

s̃+ =
�2 − 1

κ1

(
1−x0

1+x0

)

�2 + 1
κ1

(
1−x0

1+x0

)

s̃i = 2� 1
1+x0

�2 + 1
κ1

(
1−x0

1+x0

)xi
x0 = (1 + s̃+)− κ1�

2(1− s̃+)

(1 + s̃+) + κ1�2(1− s̃+)

xi = 2�

(1 + s̃+) + κ1�2(1− s̃+)
s̃i i = 1, 2.

(4.5)

By substituting in the above expressions the parametrizations of (x0, x1, x2) in terms of
geodesic coordinates of S2

[κ1],κ2
given in [1], we recover the results written in table 2 for

the s̃i coordinates of C2
[κ1],κ2

. Such equations show the identification of antipodal pairs of
points at infinity in S2

[+],κ2
because these are mapped by stereographical projection into the

same image.
Thus we find the description of the embedding S2

[κ1],κ2
−→ C2

[κ1],κ2
in any coordinate

system by identifying the parametrizations of (s̃+, s̃1, s̃2) just obtained with those given
in conformal geodesic coordinates (3.4); these results are also collected in table 2. Such
general expressions are illustrated in table 3 for the nine spaces in parallel I coordinates,
(a, y) → (A, Y ), and represented in figure 1. Note that

Cκ1(a) = Cκ1�2(a/�) Sκ1(a) = �Sκ1�2(a/�)

Cκ1κ2(y) = Cκ1κ2�2(y/�) Sκ1κ2(y) = �Sκ1κ2�2(y/�).
(4.6)

The embedding has a non-canonical character, as it depends on the choice of �. Only the sign
of κ1 matters, as for any fixed κ1, a suitable choice of � can reduce the dimensionless product
κ1�

2 to either 1, 0,−1.
Now we discuss separately the conformal embedding for each particular CK space.

4.1. Riemannian spaces: S2
[κ1],+ −→ C2

[κ1],+ ≡ S2

The embedding of the sphere S2
[+],+ covers the full sphere S2 once, so that S2 coincides with

its conformal compactification.
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Table 3. The conformal embedding in parallel I coordinates for the nine CK spaces: (a, y) ≡
(t, y) ∈ S2

[κ1],κ2
−→ (A, Y ) ≡ (T , Y ) ∈ C2

[κ1],κ2
≡ S̃2

[+],κ2
. The length � is chosen in such

a manner that κ1�
2 ∈ {1, 0,−1} and κ2 ∈ {1, 0,−1/c2}. In the six spacetimes, t is the time

coordinate and y the space coordinate.

S2 −→ S2 E2 −→ S2 H2 −→ S2

κ1�
2 = 1, κ2 = 1 κ1�

2 = 0, κ2 = 1 κ1�
2 = −1, κ2 = 1

s̃+ = cos(a/�) cos(y/�) s̃+ = 4− {(a/�)2 + (y/�)2}
4 + {(a/�)2 + (y/�)2} s̃+ = 1

cosh(a/�) cosh(y/�)

s̃1 = sin(a/�) cos(y/�) s̃1 = 4a/�

4 + {(a/�)2 + (y/�)2} s̃1 = tanh(a/�)

s̃2 = sin(y/�) s̃2 = 4y/�

4 + {(a/�)2 + (y/�)2} s̃2 = tanh(y/�)

cosh(a/�)

tanA = tan(a/�) tanA = 4a/�

4− {(a/�)2 + (y/�)2} tanA = sinh(a/�) cosh(y/�)

sinY = sin(y/�) sinY = 4y/�

4 + {(a/�)2 + (y/�)2} sin Y = tanh(y/�)

cosh(a/�)

NH1+1
+ −→ ÑH

1+1
+ G1+1 −→ ÑH

1+1
+ NH1+1− −→ ÑH

1+1
+

κ1�
2 = 1, κ2 = 0 κ1�

2 = 0, κ2 = 0 κ1�
2 = −1, κ2 = 0

s̃+ = cos(t/�) s̃+ = 4− (t/�)2
4 + (t/�)2

s̃+ = 1

cosh(t/�)

s̃1 = sin(t/�) s̃1 = 4t/�

4 + (t/�)2
s̃1 = tanh(t/�)

s̃2 = y/� s̃2 = 4y/�

4 + (t/�)2
s̃2 = y/�

cosh(t/�)

tan T = tan(t/�) tan T = 4t/�

4− (t/�)2 tan T = sinh(t/�)

Y = y/� Y = 4y/�

4 + (t/�)2
Y = y/�

cosh(t/�)

AdS1+1 −→ ÃdS
1+1

M1+1 −→ ÃdS
1+1

dS1+1 −→ ÃdS
1+1

κ1�
2 = 1, κ2 = −1/c2 κ1�

2 = 0, κ2 = −1/c2 κ1�
2 = −1, κ2 = −1/c2

s̃+ = cos(t/�) cosh(y/c�) s̃+ = 4− {(t/�)2 − (y/c�)2}
4 + {(t/�)2 − (y/c�)2} s̃+ = 1

cosh(t/�) cos(y/c�)

s̃1 = sin(t/�) cosh(y/c�) s̃1 = 4t/�

4 + {(t/�)2 − (y/c�)2} s̃1 = tanh(t/�)

s̃2 = c sinh(y/c�) s̃2 = 4y/�

4 + {(t/�)2 − (y/c�)2} s̃2 = c tan(y/c�)

cosh(t/�)

tan T = tan(t/�) tan T = 4t/�

4− {(t/�)2 − (y/c�)2} tan T = sinh(t/�) cos(y/c�)

sinh(Y/c) = sinh(y/c�) sinh(Y/c) = 4(y/c�)

4 + {(t/�)2 − (y/c�)2} sinh(Y/c) = tan(y/c�)

cosh(t/�)

For the Euclidean plane E2, the embedding covers the full sphere S2 minus a single point,
with conformal Weierstrass coordinates (−1, 0, 0), that is, the pole P of the stereographic
projection. This is the usual point at infinity required to globally define inversions and
transforms E2 into its 1-point compactification, the Riemann sphere.

The embedding of the Lobachewski plane H2 only covers a disc in the sphere (when � is
chosen such that κ1�

2 = −1, this disc is exactly the half-sphere given by s̃+ > 0), and points
at infinity in H2 appear as ordinary points in the disc boundary, which for κ1�

2 = −1 is the
equator (s̃+ = 0); the new points added in the compactification make up the complementary
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Figure 1. Visualization of the conformal compactification C2
[κ1],κ2

≡ S̃2
[+],κ2

, for the nine CK

spaces in conformal Weierstrass coordinates (s̃+, s̃1, s̃2); the point O = (1, 0, 0) is the origin in
C2

[κ1],κ2
and P = (−1, 0, 0) is its antipodae. Marked points, lines or regions in darker grey indicate

the elements which should be added to the initial space in order to obtain its compactification. For
the six spacetimes with κ2 � 0, there is antipodal identification of points at infinity corresponding
to the two circles (s̃+)2 + (s̃1)2 = constant.

disc (s̃+ < 0 if κ1�
2 = −1), which may be considered as another copy of H2 glued to the

proper embedding of the hyperbolic plane in S2 by the points in the discs’ boundaries (the
equator s̃+ = 0 which plays the role of the points at infinity in both copies of the initial space
H2). In this structure we can recognize the half-plane model of hyperbolic space, whose other
half contains naturally another copy of H2.

4.2. Non-relativistic spacetimes: S2
[κ1],0 −→ C2

[κ1],0 ≡ ÑH
1+1
+

The transition from NH1+1
+ to ÑH

1+1
+ requires antipodal identification of the two circles

(s̃+)2 + (s̃1)2 = 1 at the infinity s̃2 = ±∞. Thus the new space is compact. Once this
is assumed, the description of the compactification of the three non-relativistic spacetimes is
straightforward. For oscillating NH spacetime NH1+1

+ , one has simply to embed identically
NH1+1

+ into itself.
For the Galilei spacetime G1+1, its conformal embedding into NH1+1

+ covers this space
minus the line s̃+ = −1, s̃1 = 0, any s̃2; the (pole) point P = (−1, 0, 0) on this line plays the
role of the point at infinity in G1+1 and other points on this line correspond to the ‘instantaneous
1D space’ of the point at infinity.

The conformal embedding of the expanding NH spacetime NH1+1
− into NH1+1

+ covers one
half of the cylinder (say the ‘upper’ one s̃+ > 0), so that one has to add as new points the



6628 F J Herranz and M Santander

remaining ‘lower’ half of the cylinder (s̃+ < 0) glued to the other proper half by the two lines
in the plane s̃+ = 0.

4.3. Relativistic spacetimes: S2
[κ1],− −→ C2

[κ1],− ≡ ÃdS
1+1

In these cases we set κ2 = −1/c2. The transition from AdS1+1 to ÃdS
1+1

follows by
antipodal identification of the two circles at the spatial infinity in the anti-de Sitter spacetime:
(s̃+)2 + (s̃1)2 − (s̃2)2/c2 = 1, that is, (s̃+)2 + (s̃1)2 = ∞ for s̃2 = ±∞; each circle
s̃2 = ∞, s̃2 = −∞ is antipodal to the other. The compact time-like lines (label κ1 > 0) embed
homeomorphically, while the space-like lines, whose label is κ1κ2 < 0, hence hyperbolic and
originally not compact, are glued by their points at infinity with their antipodal lines in
AdS1+1, following the antipodal identification of their points at infinity; hence they also
become compact. Topologically the space so obtained is S1 × S1. One S1 corresponds to the
originally compact time-like line l1. The other comes from the 1D compactification of the
originally hyperbolic, hence non-compact space-like line l2, which is obtained by glueing two
copies of a hyperbolic line (l2 and its antipode) by their points at infinity.

For Minkowskian spacetime M1+1, the completion requires adding two lines with equations
s̃+ = −1, s̃2 = ±cs̃1 crossing through the intersection (pole) point P . This is rather well
known (compare, e.g., [12]): the new point P corresponds to the point ‘at infinity’ in M1+1

and the two new lines are the light-cone of the point at infinity. We stress that this description
appears as a particular case within the complete scheme, and its dependence on curvature can
be clearly seen.

Finally, the de Sitter spacetime dS1+1, with hyperbolic non-compact time-like lines
(κ1 < 0) and compact space-like ones (κ1κ2 > 0) is the only CK space where parallel I
coordinates do not completely cover the space, so the expressions in table 3 do not provide
a description in all dS1+1. In this case it is better to use stereographic projection directly,
which maps the whole de Sitter spacetime into AdS1+1 in a one-to-one way compatible with
antipodal identification in AdS1+1. This could have been foreseen, as essentially dS1+1 and
AdS1+1 are the same space, with an interchange time-like ↔ space-like, so we can expect
dS1+1 and AdS1+1 to have essentially the same compactification. If we are interested only in
the double wedge in dS1+1 covered by parallel I coordinates (with focal points at the poles of
the initial time-like line l1), the embedding of this region is determined by (s̃1)2 < 1, that is,
0 < (s̃+)2− (s̃2)2/c2 � 1, which is limited by four lines with equations s̃1 = ±1, s̃2 = ±cs̃+;
these four lines are the two pairs of isotropic lines through the two poles of the initial non-
compact time-like line l1. However, the other regions limited by these lines in the conformal
compactification are not new points, but the images by the embedding of the region of dS1+1

not covered by the parallel I coordinates.

5. Concluding remarks

It is well known that the action of the isometry (kinematical) group SOκ1,κ2(3) on the 2D
spaces S2

[κ1],κ2
can be linearized in an ambient space R

3 with one extra dimension. In this
paper we have explicitly shown that for any constant curvature or metric signature type,
the conformal group confκ1,κ2 can be realized as a matrix group acting as globally defined
linear transformations in a ‘conformal ambient space’ R

4, with two extra dimensions, and thus
acting (non-linearly but still globally) in a suitable conformal extension of the initial space. By
pursuing this construction within the CK viewpoint, the present paper affords a new approach
to conformal groups that produces a very explicit description of the conformal compactification
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of homogeneous spacetimes. The result that the conformal completion of a space of constant
curvature κ1 does not depend on the curvature may be foreseen from the well known fact
that every 2D metric, constant curvature or not, is conformally flat, and hence a fortiori the
conformal compactification of a curved space will coincide with that of its corresponding flat
one. This can also be clearly seen in our approach, but we have obtained much more than that,
including a joint view of the structure of these conformal compactifications that allows a clear
understanding and visualization of how the embedding of the initial spacetime changes when
its curvature vanishes or when the metric degenerates.

Finally we stress that the structure of conformal compactification of Minkowskian
spacetime appears as a particular instance within our parametric approach. This issue is of
relevance in view of the current interest in AdS–CFT correspondence as a conjecture relating
local QFT on AdS1+(d−1) to a conformal QFT on the compactified Minkowski spacetime
comp M1+(d−2) (see [15] and references therein). In this context an explicit description of
the geometry behind these relativistic spacetimes in a way as general as possible should be
helpful.
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